Generalized Relative Order of Functions of Several Complex Variable Analytic in the Unit Poly Disc

Balram Prajapati and Anupma Rastogi

Department of Mathematics \& Astronomy, University of Lucknow, Lucknow, Pin 226007, India
E-mail Id: balram.kavleshwar@gmail.com ${ }^{1}$ and anupmarastogi13121993@gmail.com²
Abstract: Throughout in this paper we consider generalized relative order of a function of several complex variable analytic in the unit poly disc with respect to an entire function and prove several theorems.

Key words: Analytic function, entire function, generalized relative order, poly disc, property (R).

Introduction, Definition, and Notation.

In the unit disc $U:\{z:|z|<1\}$ a function f analytic, is said to be of finite Nevanlinna order [4] (Juneja and Kapoor 1985) if there exists a number μ such that Nevanlinna characteristic function $T(r, f)$ of defined by

$$
T(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta
$$

satisfies

$$
T(r, f)=(1-r)^{-\mu}
$$

for all r in $0<r_{0}(\mu)<r<1$
Thus the Nevanlinna order $\rho(f)$ of f is given by $\rho(f)=\lim _{r \rightarrow 1} \sup \frac{\log T(r, f)}{\log (1-r)^{-1}}$

Introduced the idea of relative order of an entire function in [1] Banerjee and Dutta which as follows-

Definition 1. If in U, f is an analytic and g be entire, then the relative order of f with respect to g, denoted by

$$
\rho_{g}(f)=\inf \left\{\begin{array}{c}
\mu>0: T_{f}(r)<T_{g}\left[\left(\frac{1}{1-r}\right)^{\mu}\right] \\
\forall 0<r_{0}(\mu)<r<1
\end{array}\right\}
$$

When $g(z)=\exp z$ then the definition 1 coincides with definition of Nevanlinna order of f.

Definition 2. Let $f\left(z_{1}, z_{2}\right)$ be non constant analytic function of two complex variables z_{1} and z_{2} holomorphic in the closed poly disc $P:\left\{\left(z_{1}, z_{2}\right):\left|z_{j}\right| \leq 1 ; j=1,2\right\}$ and $g\left(z_{1}, z_{2}\right)$ be an entire function then relative order of f with respect to g is defined by

$$
\begin{aligned}
& \rho_{g}(f)= \\
& \inf \left\{\begin{array}{c}
\mu>0: F\left(r_{1}, r_{2}\right) \\
\left.<G\left(\frac{1}{\left(1-r_{1}\right)^{\mu}}, \frac{1}{\left(1-r_{2}\right)^{\mu}}\right), \forall 0<r_{0}(\mu)<r_{1}, r_{2}<1\right\}
\end{array}\right.
\end{aligned}
$$

Dutta [5] introduced the following definition.
Definition 3. Let two entire function $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ and $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ of n complex variables with maximum modulus functions $F\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ and $G\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ respectively, then relative order of f with respect to g defined by

$$
\begin{aligned}
\rho_{g}(f)=\inf \{\mu & >0: F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& <G\left(r_{1}^{\mu}, r_{2}^{\mu}, \ldots ., r_{n}^{\mu}\right) \text { for } r_{i} \\
& \geq R(\mu) ; i=1,2,3, \ldots n\}
\end{aligned}
$$

Dutta [6] introduced in this paper the following definition.

Definition 4. Let

$$
\begin{aligned}
& f\left(z_{1}, z_{2}, \ldots ., z_{n}\right) \\
& =\sum_{m_{1}, m_{2}, \ldots m_{n}=0}^{\infty} C_{m_{1} m_{2} \ldots \ldots m_{n}} z_{1}^{m_{1}} z_{2}^{m_{2}} \ldots . z_{n}^{m_{n}}
\end{aligned}
$$

be a function of n complex variables $z_{1}, z_{2}, \ldots, z_{n}$ holomorphic in the unit poly disc
$P:\left\{\left(z_{1}, z_{2}\right):\left|z_{j}\right| \leq 1 ; j=1,2\right\}$ and the maximum modulus,

$$
\begin{gathered}
F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
=\max \left\{\left|F\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right|:\left|z_{j}\right| \leq r_{j} ; j\right. \\
=1,2, \ldots, n\}
\end{gathered}
$$

The order ρ and lower order λ are defined as

$$
=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1} \sup \frac{\log \log F\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots \cdot\left(1-r_{n}\right)}
$$

and
λ

$$
=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1} \inf \frac{\log \log F\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots\left(1-r_{n}\right)}
$$

Definition 5. In the closed unit poly disc , $f\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be a non constant analytic of several complex variables $P:\left\{\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right.$: $\left.\left|z_{j}\right| \leq 1 ; j=1,2, \ldots . n\right\}$ and $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be an entire function then relative order of f with respect to g denoted by
$\rho_{g}(f)=\inf \left\{\begin{array}{c}\mu>0: F\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\ \left.<G\binom{\frac{1}{\left(1-r_{1}\right)^{\mu}}, \frac{1}{\left(1-r_{2}\right)^{\mu}},}{\ldots ., \frac{1}{\left(1-r_{n}\right)^{\mu}}} \forall,\right\} \\ 0<r_{0}(\mu)<r_{1}, r_{2}, \ldots, r_{n}<1\end{array}\right)$
where $G\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\max \left\{\left|g\left(z_{1}, z_{2}, \ldots, z_{n}\right)\right|\right.$: $\left.\left|z_{j}\right|=r_{j} ; j=1,2, \ldots, n\right\}$.
when $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=e^{z_{1} z_{2} \ldots z_{n}}$ then definition 5 coincides definition 4 and if $n=2$ then coincide with definition 2 .

Definition 6. An entire function $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is said to have the property (R) if for any $\sigma>$ $1, \lambda>0$ and for all r_{i} sufficiently close to $1 ; i=$ $1,2, \ldots, n$

$$
\begin{aligned}
& G\left[\left(\frac{1}{\left(1-r_{1}\right)^{\lambda_{1}}}, \frac{1}{\left(1-r_{2}\right)^{\lambda_{2}}}, \ldots \ldots, \frac{1}{\left(1-r_{n}\right)^{\lambda_{n}}}\right)\right]^{2} \\
< & G\left(\frac{1}{\left(\left(1-r_{1}\right)^{\lambda}\right)^{\sigma}}, \frac{1}{\left(\left(1-r_{2}\right)^{\lambda}\right)^{\sigma}} \cdots \cdots, \frac{1}{\left(\left(1-r_{n}\right)^{\lambda}\right)^{\sigma}}\right)
\end{aligned}
$$

If $g\left(z_{1}, z_{2}, \ldots ., z_{n}\right)=z_{1} z_{2} \ldots z_{n}$ has not property of (R) but $g\left(z_{1}, z_{2}, \ldots, z_{n}\right)=e^{z_{1} z_{2} \ldots z_{n}}$ has the property of (R) those in available in [3] and [4]. Dutta and Jerin introduced the idea of generalized relative order.

Definition 7. Introduced the idea of generalized relative order in [1] Nevanlinna's characteristic function of f is denoted by $T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$. The relative generalized Nevanlinna order of an analytic function f in unit U with respect to another entire function g are defined by

$$
\begin{gathered}
\rho_{g}^{P}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)= \\
\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1} \sup \frac{\log ^{[P]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots\left(1-r_{n}\right)}
\end{gathered}
$$

Lemma 1. [6] If entire function f have the property of (R). Then for any positive integer n and for all $\sigma>1, \lambda>0$,

$$
G\left[\left(\frac{1}{\left(1-r_{1}\right)^{\lambda_{1}}}, \frac{1}{\left(1-r_{2}\right)^{\lambda_{2}}}, \ldots \ldots, \frac{1}{\left(1-r_{n}\right)^{\lambda_{n}}}\right)\right]^{n}
$$

and
$<G\left(\frac{1}{\left(\left(1-r_{1}\right)^{\lambda}\right)^{\sigma}}, \frac{1}{\left(\left(1-r_{2}\right)^{\lambda}\right)^{\sigma}}, \ldots ., \frac{1}{\left(\left(1-r_{n}\right)^{\lambda}\right)^{\sigma}}\right)$
Where $r_{i}, 0<r_{i}<1, i=1,2, \ldots, n$.

Lemma 2. [6] If g is entire function then

$$
\begin{aligned}
& T_{g}\left(\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)}, \ldots, \frac{1}{\left(1-r_{n}\right)}\right) \\
\leq & \log G\left(\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)}, \ldots ., \frac{1}{\left(1-r_{n}\right)}\right) \\
\leq & 3 T_{g}\left(\frac{2}{\left(1-r_{1}\right)}, \frac{2}{\left(1-r_{2}\right)}, \ldots, \frac{2}{\left(1-r_{n}\right)}\right)
\end{aligned}
$$

For all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$.
Theorem 1. Let in U, f be analytic of generalized relative order $\rho_{g}^{P}(f)$ where g is entire. Let $\varepsilon>0$ be arbitrary
$O\left(\log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)}}{,\cdots \frac{1}{\left(1-r_{n}\right)}}{ }^{\rho_{g}^{P} f\left(r_{1}, r_{2}, \ldots, r_{n}\right)+\varepsilon}\right)\right)$
holds for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, conversely if for an analytic f in U and entire g having the property (R)

$$
\left.\begin{array}{c}
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)= \\
O\left(\operatorname { l o g } G \left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots ., \frac{1}{\left(1-r_{n}\right)}}\right.\right.
\end{array}\right)
$$

$$
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=
$$

$$
O\left(\log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots \cdot, \frac{1}{\left(1-r_{n}\right)}}^{k-\varepsilon}\right)\right)
$$

does not holds for all $r_{1}, r_{2}, \ldots, r_{n}, 0<$ $r_{1}, r_{2}, \ldots, r_{n}<1$, then

$$
k=\rho_{g}^{P} f\left(r_{1}, r_{2}, \ldots, r_{n}\right)
$$

Proof. From the definition of generalized relative order, we have

$$
\begin{gathered}
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=T_{g} \\
\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\exp ^{[p-1]}\left(\frac{1}{\left(1-r_{n}\right)}\right.}
\end{gathered}
$$

for $0<r_{1}, r_{2}, \ldots, r_{n}<1$, or

$$
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=
$$

$$
\log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)}}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{g}^{P} f\left(r_{1}, r_{2}, \ldots, r_{n}\right)+\varepsilon}\right)
$$

$0<r_{1}, r_{2}, \ldots, r_{n}<1$, by lemma 2 so

$$
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=
$$

$O\left(\log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)}}{\ldots . \frac{1}{\left(1-r_{n}\right)}}^{\rho_{g}^{P} f\left(r_{1}, r_{2}, \ldots, r_{n}\right)+\varepsilon}\right)\right)$
conversely, if

$$
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=
$$

holds for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently closed to 1 , and

$$
O\left(\log G\left(\exp ^{[p-1]}\binom{\left.\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},\right)^{k+\varepsilon}}{\cdots \cdot \frac{1}{\left(1-r_{n}\right)}}\right)\right.
$$

holds for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, then

$$
\begin{gathered}
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
=[\alpha] \log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots ., \frac{1}{\left(1-r_{n}\right)}}^{k+\varepsilon}\right), \alpha
\end{gathered}
$$

$$
>1
$$

$$
=\frac{1}{3} \log \left[G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}\right]\right]^{k+\varepsilon}
$$

$$
\leq \frac{1}{3} \log G\left(\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots \cdot, \frac{1}{\left(1-r_{n}\right)}}^{k+\varepsilon}\right)^{\sigma}\right)
$$

By lemma 1 for any $\sigma>1$,

$$
\leq T_{g}\left[2\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{k+\varepsilon}\right)\right]^{\sigma}
$$

by lemma 2 since

$$
\begin{aligned}
& \log T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& \leq \log 2 \\
& +\log \left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots \cdot, \frac{1}{\left(1-r_{n}\right)}}^{k+\varepsilon}\right)^{\sigma}
\end{aligned}
$$

$$
\leq \exp ^{[p-2]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{k+\varepsilon}+O(1)
$$

Since,

$$
\begin{gathered}
\log ^{[2]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
\leq \exp ^{[p-3]}\binom{\left.\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},\right)^{k+\varepsilon}+O(1)}{\cdots ., \frac{1}{\left(1-r_{n}\right)}}^{n}
\end{gathered}
$$

So
(a)
$\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1-} \sup \frac{\log ^{[P]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots\left(1-r_{n}\right)} \leq k+\varepsilon$
Since $\varepsilon>0$, we have

$$
\begin{gathered}
\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1-} \sup \frac{\log ^{[P]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots .\left(1-r_{n}\right)} \\
\leq k
\end{gathered}
$$

$r_{1}, r_{2}, \ldots, r_{n}$ tending to $1-$ then there exist a sequence $\left\{r_{n}\right\}$ for which

$$
\left.\begin{array}{c}
T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
=\log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}^{k-\varepsilon}\right) \\
\geq T_{g}\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots ., \frac{1}{\left(1-r_{n}\right)}}\right.
\end{array}\right)
$$

by lemma 2 and so
(b)
$\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1-} \sup \frac{\log ^{[P]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots\left(1-r_{n}\right)} \geq k-\varepsilon$
for $r=r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1-$ combining (a) and
(b) we obtain $k=\rho_{g}^{p}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$
hence proof the theorem.

SUM AND PRODUCT THEOREM

Theorem 2. In the unit disc U , having f_{1} and f_{2} of generalized relative orders $\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$ and $\rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$ respectively, where g is entire having the property (R) then

$$
\begin{equation*}
\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)+f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \leq \tag{i}
\end{equation*}
$$ $\max \left\{\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right), \rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right\}$

(ii) $\quad \rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) . f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \leq$ $\max \left\{\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right), \rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right\}$
the some inequality holds for quotients the equality holds
(ii) if $\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \neq \rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$.

Proof. Let $\rho_{1}=\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \quad$ and $\rho_{2}=\rho_{g}^{[p]}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$ and $\rho_{1} \leq \rho_{2}$. We assume that $\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$ and $\rho_{g}^{[p]}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$ both are finite because if one of them or both are infinite inequality are evident for arbitrary $\varepsilon>0$ and for all $r_{1}, r_{2}, \ldots, r_{n}, 0<$ $r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently close to 1 we have

$$
\begin{aligned}
& T_{f_{1}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
& \quad<T_{g}\binom{\left.\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{1}+\varepsilon}\right)}{\leq \log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{1}+\varepsilon}\right)}
\end{aligned}
$$

$$
\begin{gathered}
T_{f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
<T_{g}\left(\begin{array}{c}
\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots ., \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}
\end{array}\right)
\end{gathered}
$$

$$
\leq \log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)}}{\cdots \cdot, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}\right)
$$

Using lemma 2 for all $r_{1}, r_{2}, \ldots, r_{n}, 0<$ $r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently close to 1

$$
\begin{gathered}
T_{f_{1} \neq f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
\leq T_{f_{1}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \pm T_{f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right)+O(1) \\
\leq \log G\left(\begin{array}{c}
\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{1}+\varepsilon}
\end{array}\right) \\
+\log G\binom{\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}}{+O(1)}
\end{gathered}
$$

$$
\leq 3 \log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}\right)
$$

$$
=\frac{1}{3} \log \left[G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}\right)\right]^{9}
$$

and
$\leq \frac{1}{3} \log G\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}\right)^{\sigma}$
by lemma 1 , for any $\sigma>1$
$\leq T_{g}\left(2\left(\exp ^{[p-1]}\binom{\left.\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},\right)^{\rho_{2}+\varepsilon}}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\sigma}\right)\right.$
by lemma 2 , since

$$
T_{g}^{-1} T_{f_{1} \neq f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq
$$

$\log 2$

$$
+\log \left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}\right)^{\sigma}
$$

$$
\leq \exp ^{[p-2]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{2}+\varepsilon}+O(1)
$$

$$
\begin{gathered}
T_{g}^{-1} T_{f_{1} \neq f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \\
\log ^{[2]} \leq \exp ^{[p-3]}\binom{\left.\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},\right)^{\rho_{2}+\varepsilon}}{\cdots, \frac{1}{\left(1-r_{n}\right)}}+O(1)
\end{gathered}
$$

$$
\left.\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)+f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right)
$$

$=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1-} \sup \frac{\log ^{[P]} T_{g}^{-1} T_{f_{1} \neq f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots . .\left(1-r_{n}\right)} \leq$
$\rho_{2}+\varepsilon$
since $\varepsilon>0$ is arbitrary,

$$
\left.\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)+f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right) \leq \rho_{2}
$$

$\leq \max \left\{\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right), \rho^{2}\right.$
which proves (i), for (ii), since
$T_{f_{1} \cdot f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \leq T_{f_{1}}\left(r_{1}, r_{2}, \ldots, r_{n}\right)+$ $T_{f_{2}}\left(r_{1}, r_{2}, \ldots, r_{n}\right)$
we obtain similarly as above

$$
\begin{gathered}
\left.\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right) \cdot f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right) \\
\leq \max \left\{\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right), \rho_{g}^{[p]}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right\}
\end{gathered}
$$

Let $f=f_{1} f_{2}$ and

$$
\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)<\rho_{g}^{[p]}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

Then applying (ii), we have

$$
\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \leq \rho_{g}^{[p]}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

again since $f_{2}=\frac{f}{f_{1}}$, applying the first part of (ii), we have

$$
\begin{gathered}
\rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \\
\leq \max \left\{\rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right), \rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right\}
\end{gathered}
$$

since

$$
\rho_{g}^{[p]}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)<\rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

we have

$$
\begin{gathered}
\rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \leq \rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \\
=\max \left\{\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right), \rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)\right\}
\end{gathered}
$$

when

$$
\rho_{g}^{p}\left(f_{1}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \neq \rho_{g}^{p}\left(f_{2}\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

this prove the theorem.
RELATIVE ORDER WITH RESPECT TO THE DERIVATIVE OF AN ENTIRE FUNCTIONS

Theorem 3. In the unit disc, f is analytic function and g be transcendental entire having the property (R), then

$$
\rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)=\rho_{g^{\prime}}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

where g ' denotes the derivative of g. To prove the theorem we require the following lemmas.

Lemma 3. [1] If g be transcendental entire, then for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently close to 1 for any $\lambda>0$

$$
\begin{gathered}
T_{g^{\prime}}\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots, \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right) \\
\leq 2 T_{g}\left(2\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right)\right) \\
+O\left(T_{g}\left(2\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right)\right)\right)
\end{gathered}
$$

Lemma 4. [1] If g be transcendental entire, then for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently close to 1 for any $\lambda>0$

$$
\begin{gathered}
T_{g}\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots, \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right) \\
\leq \alpha_{0}\left[T_{g},\left(2\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right)\right)\right] \\
\quad+\log \left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right)
\end{gathered}
$$

Where α_{0} is constant which is only dependent on $g(0)$.

PROOF OF THE THEOREM

Proof. We obtain for $r_{1}, r_{2}, \ldots, r_{n}, 0<$ $r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently close to 1 from the lemma 3 and lemma 4.

$$
\begin{gathered}
T_{g^{\prime}}\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots, \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right){ }^{1403} \\
<[c] T_{g}\left(2\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right)\right)
\end{gathered}
$$

and
(d)

$$
\begin{gathered}
T_{g}\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right) \\
<\left[c_{0}\right] T_{g}\left(2\left(\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}}, \ldots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}\right)\right)
\end{gathered}
$$

Where c_{0} and $\lambda>0$ be any number from the definition of $\rho_{g^{\prime}}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)$, we get for any arbitrary $\varepsilon>0$
$\left.\left(\exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)^{\lambda}}, \frac{1}{\left(1-r_{2}\right)^{\lambda}},}{\cdots ., \frac{1}{\left(1-r_{n}\right)^{\lambda}}}\right)^{\rho_{g} f\left(r_{1}, r_{2}, . ., r_{n}\right)+\varepsilon}\right)$
for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, from (c) and by lemma 1 and lemma 2
for all $r_{1}, r_{2}, \ldots, r_{n}, 0<r_{1}, r_{2}, \ldots, r_{n}<1$, sufficiently close to 1

$$
\begin{aligned}
& T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)< \\
& {[c] T_{g}\left(2 \exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}^{\rho_{g}^{[p]} f\left(r_{1}, r_{2}, \ldots, r_{n}\right)+\varepsilon}\right)} \\
& \leq \\
& {[c] \log G\left(2 \exp ^{[p-1]}\binom{\left.\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},\right)^{\rho_{g^{\prime}}[p]} f\left(r_{1}, r_{2}, ., r_{n}\right)+\varepsilon}{\ldots, \frac{1}{\left(1-r_{n}\right)}}\right.}
\end{aligned}
$$

(c)

\leq
$\left.\frac{1}{3} \log \left(G\left(2 \exp ^{[p-1]}\binom{\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},}{\ldots, \frac{1}{\left(1-r_{n}\right)}}\right)^{\rho_{g^{\prime}}^{[p]} f\left(r_{1}, r_{2}, . ., r_{n}\right)+\varepsilon}\right)^{\sigma}\right)$
For any $\sigma>1$

$$
\begin{aligned}
& \leq \\
& T_{g}\left(2^{\sigma+1}\left(\exp ^{[p-1]}\binom{\left.\frac{1}{\left(1-r_{1}\right)}, \frac{1}{\left(1-r_{2}\right)},\right)^{\rho_{g^{\prime}}^{[p]} f\left(r_{1}, r_{2}, ., r_{n}\right)+\varepsilon}}{\cdots, \frac{1}{\left(1-r_{n}\right)}}^{\sigma}\right)\right.
\end{aligned}
$$

$$
\rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

$$
=\lim _{r_{1}, r_{2}, \ldots, r_{n} \rightarrow 1-} \sup \frac{\log ^{[P]} T_{g}^{-1} T_{f}\left(r_{1}, r_{2}, \ldots, r_{n}\right)}{-\log \left(1-r_{1}\right)\left(1-r_{2}\right) \ldots\left(1-r_{n}\right)}
$$

$$
\leq \rho_{g^{\prime}}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)+\varepsilon
$$

since $\varepsilon>0$ is arbitrary, so

$$
\rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \leq \rho_{g^{\prime}}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

from (d) we obtain similarly,

$$
\rho_{g^{\prime}}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right) \leq \rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

so

$$
\rho_{g}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)=\rho_{g^{\prime}}^{[p]}\left(f\left(r_{1}, r_{2}, \ldots, r_{n}\right)\right)
$$

Hence prove the theorem.
Acknowledgement. The author is thankful to the referee for his helpful suggestion and guidance for the preparation of this paper.
[2] Dutta, S.K., and Jerin E., Further results on the generalized growth properties of functions analytic in a Unit disc, International Journal of Contemporary Mathematical Sciences, Vol. 5, No. 23(2010), PP $1137-1143$.
[3] Hayman W.K., Meromorphic function, the Clarendon Press, Oxford, 1964.
[4] Juneja,O.P., and Kapoor, G.P., Analytic functions growth aspect, Pitman advanced Publishing program, 1985.
[5] Banerjee, D., and Dutta, R.K., Relative order of functions of two complex variables analytic in the Unit disc journal of mathematics, 2008,1: $37-$ 44.
[6] Dutta, R.K., Relative order of entire functions of several complex variables Matematiqke Vesnik, 2013,65(2): $222-233$.
[7] Dutta, R.K., On order of a function of several complex variables analytic in the Unit polydisc. Journal of information and computing Sciences,2011,6(2),97-108.

References.

